

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 1 of 44

Code of Conduct SAP

Development Standard

GIS

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 2 of 44

Executive Summary

This Code of Conduct (CoC) describes the quality standards for custom developments on

all company SAP systems of HEINEKEN.

This document provides conventions and general guidelines to achieve a uniform way of

developing custom repository objects in SAP; conventions and guidelines on quality

assurance for development objects together with checklists of demands for developments

in order to make the acceptance of developments measurable. The Code of Conduct

applies to all ABAP Workbench and Data Dictionary developments on all company SAP

systems.

Summary of changes compared to previous version

In this version, only the requirement of table content archiving (5.3.4.) has been added in

relation to custom built tables. In the previous version, the use of SAP Code Inspector

being mandatory for all new developments and the section on workflows were added.

Owner of the Standard

Name Function

Maarten Buikhuisen Global Solutions

Effective date of current version/ Transition period

Effective date 01.10.2016

End of transition period 01.01.2017

Applicable for

Mandatory for Global Functions

Recommended for OpCos

Approval by the GIS MT and higher body if needed

Approving body Date

Functional owner Maarten Buikhuisen 01.10.2016

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 3 of 44

Next planned review

Review Date/ Trigger

Next review date planned 02.01.2019

Based on trigger The Code of Conduct is subject to an annual release. The new

version, if applicable, will be effective as part of the annual

review process.

Taxonomy

Company Solutions

Enterprise Keywords

ABAP; development

Expert group members to create the document - SMEs

Name of SME Function

Roy van de Kerkhof ABAP Consultant GIS CoET

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 4 of 44

Table of Contents
1 Welcome ... 7

2 Introduction .. 8

 Objective ... 8

 Impact ... 8

 Enforcement and validity ... 8

 Transition period ... 9

 Required actions ... 9

3 Quality .. 10

 Code Quality ... 10

4 Design .. 12

 MVC .. 12

 Object Oriented Programming ... 12

5 Security ... 13

 Introduction .. 13

 In General.. 13

 HEINEKEN Authorisation Concept in ABAP Coding ... 13

5.3.1 Authorisation on Function .. 14

5.3.2 Authorisation on Data Access... 14

5.3.3 OO encapsulation of authorisation concept .. 14

 Application Security .. 15

6 Performance.. 16

 Introduction .. 16

 In General.. 16

 Regarding Database Access ... 16

6.3.1 Limit Amount of Traffic .. 17

6.3.2 Limit Search Range ... 17

6.3.3 Limit Result Set .. 17

6.3.4 Table content archiving .. 18

 Regarding Internal Processing ... 18

6.4.1 Ensure Correct Data Typing .. 18

6.4.2 Optimise Access to Internal Tables... 18

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 5 of 44

7 Readability .. 20

 Program Flow and Modularisation ... 20

 Reusability .. 21

 Multilingual Support .. 21

8 Documentation ... 22

 Contents of Documentation .. 22

9 Coding Conventions .. 23

 General Rules .. 23

 Use of Constants ... 23

 Obsolete and Non-released Function Modules .. 23

 Changing and Copying Standard SAP .. 24

 Enhancing Standard SAP .. 24

 User Interface .. 25

9.6.1 Error Handling .. 25

9.6.2 Output ... 25

9.6.3 SAP Easy Access Menu .. 26

 Automated Interface .. 27

9.7.1 BAPI versus BDC ... 27

10 Naming Conventions ... 28

 Introduction .. 28

 Repository Objects .. 28

 Internal Elements .. 28

11 Workflow ... 29

 Workflows ... 29

 BOR objects and classes .. 29

 Naming conventions.. 29

12 Governance ... 30

 Compliance checking .. 30

 Derogation .. 30

A. Naming Convention Repository Objects .. 32

B. Naming Convention Internal Elements .. 39

C. SAP CRM Specific Extensions ... 41

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 6 of 44

D. Quick Reference cards .. 44

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 7 of 44

1 Welcome

Hi there and welcome to this Code of Conduct. In this document you will find everything you

need to know when you are developing on any of HEINEKEN SAP systems, from naming

conventions to guidelines on creating clean, well-performing and maintainable code that is

properly documented.

HEINEKEN can be a daunting company to work for, with SAP systems that are used by dozens

of HEINEKEN companies around the globe, each with their own specific customization and

custom programs. On these SAP systems multiple projects are being worked on

simulataneously by several project teams, offshore, onshore and nearshore, operated by

multiple vendors.

To keep track of all these changes and to make sure that all these simultaneous developments

can be managed and transported in a controlled way, we have rules and guidelines that need

to be followed.

There are two different development modes: maintenance and project. Both are governed in

different ways, but both need to adhere to the same quality standards before they can pass

quality control and be moved to production. Make sure you know what procedures you need

to follow (e.g. Service Now (SNOW), Development Factory). If you don’t know, ask your project

leader for documentation and get yourself acquainted with the procedures. If you are aware

of them beforehand, you will not be caught by surprise later on and it will make your working

life at HEINEKEN a lot easier.

The purpose of this document is to guide you through these rules and guidelines. So in the

end you will not ony have developed a beautiful piece of code, but also one that is well

documented and is ready to undergo the strict scrutiny of the HEINEKEN ABAP Custodian; and

hopefully had fun doing it.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 8 of 44

2 Introduction

 Objective

This Code of Conduct (CoC) describes the quality standards for custom developments on all

HEINEKEN SAP systems. This document provides:

• Rules and general guidelines to achieve a uniform way of developing, documenting and

maintaining custom repository objects in SAP.

• Rules and guidelines on quality assurance for development objects.

• Checklists of demands for developments in order to make the acceptance of

developments measurable.

This document does not include what are deemed SAP Development Best Practices, as we

expect all developers working on HEINEKEN SAP systems to be capable and well-trained

individuals.

 Impact

The Code of Conduct applies to development on all HEINEKEN SAP systems. All developers

have to comply with the standards described in this document.

The target audience of this document is every developer working on new developments or

modifying existing ones on any of HEINEKEN’s SAP systems, whether it is part of a project or

general support.

HEINEKEN expects every developer working on HEINEKEN’s SAP systems to be familiar with

the contents of this document. The developers are responsible for meeting the quality

standards as outlined in this document.

 Enforcement and validity

After the effective date, it shall be a primary concern and duty for everyone within the

Information Services discipline to follow the Code of Conduct SAP Development Standard, to

ensure that affected parties comply with the incorporated requirements and procedures and

to report all deviations which they become aware of to the GIS Policy Manager.

• Version 4.0.1 of this Standard named Code of Conduct Custom Developments Company

Systems became effective as of 17.05.2011.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 9 of 44

• Version 4.1 of this Standard named Code of Conduct SAP Development Standard became

effective as of 01.10.2012.

• Version 4.2 of this Standard named Code of Conduct SAP Development Standard became

effective as of 01.05.2013.

• Version 5.0 of this Standard named Code of Conduct SAP Development Standard becomes

effective as of 01.10.2016.

 Transition period

The date by which full compliance to the Standard is required: 01.01.2017.

 Required actions

There is no need to create a local version of this Standard, but the content should be made

available to all those to whom it applies.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 10 of 44

3 Quality

Quality Assurance and Control consists of two distinct parts:

1. Deliverables – the documentation that has to be delivered with every development,

explained in more detail in chapter 7.

2. Conventions - static coding rules that the deliverables must adhere to.

 Code Quality

The developer is solely responsible for a full unit test on all delivered functionality, including

authorization testing, negative testing and exception testing.

All programs will be checked visually by the HEINEKEN ABAP custodian on code quality. Checks

will be done whether the code is compliant to both the HEINEKEN rules as laid out in this

document and adherence to SAP best practices.

Apart from that, the following standard SAP tools must be used for code checking:

• Extended Program Check

• Code Inspector

3.1.1.1 Extended Program Check

Before a development is transported to a test environment, the extended program check must

be free from errors. All warning messages must be explained by the business requirements

and then commented out by pseudo code.

When a development is part of a larger standard SAP process, i.e. printing programs or user-

exits, the standard SAP part is exempt from the extended program check. However, the

individually developed part is not.

3.1.1.2 Code Inspector

The SAP Code Inspector has been adapted to fit the HEINEKEN need. The use of the SCI is

mandatory for all new developments. The results list must be free of errors and warnings. If

an SCI message is suppressed in a code, the motivation should always be explained inline.

As a developer a simple step has to be performed to make use of the HEINEKEN variant: go to

transaction SCI and copy global check variant Y_DEFAULT to the local DEFAULT. Now the local

DEFAULT check variant (with the HEINEKEN rules) will be used when SCI is activated from the

code.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 11 of 44

If Y_DEFAULT is not present on a specific common system, please contact the HEINEKEN ABAP

Custodian.

 ABAP Test Cockpit

ATC is SAP’s new way of guarding quality. It uses the Code Inspector for static code checks,

but also has a complete set of features for automated code testing.

If you model and build your code according to the principles of Test Driven Development, you

will be able to test all of your code using test classes. These can be run as a one-off, but also

be scheduled for automated testing. The results can be monitored in the ABAP Test Cockpit

(transaction ATC).

Although using ATC is not mandatory as of yet, still you are strongly encouraged to use it and

get acquainted with Test Driven Development, because it is a proven way to reduce risk and

decrease the number of bugs.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 12 of 44

4 Design

All new executable programmes should be designed as MVC (Model View Controller), meaning

that output and business logic should be separated as much as possible. Object oriented

programming is an integral part of MVC design.

There is a template program on DH1 that uses MVC and OO: YS00_RS_SALV_TEMPLATE.

 MVC

MVC is a design paradigm that calls for a clear separation of the presentation layer and the

business logic behind it. For instance, when a standard report is created, the business logic

is no longer programmed into FORMs, but in one or more classes. The advantage is that the

class methods can easily be reused, for instance when the program needs to be made available

for mobile devices.

• Model - this is the business model: database access, BAPI-calls and all other logic.

• View – the presentation layer, could be a standard GUI screen, Web Dynpro screen, etc.

• Controller – the link between the View and the Model.

Using MVC properly results in clear and intelligible designs, with well structured processing

blocks.

 Object Oriented Programming

Object oriented programming is not just replacing forms or functions by methods. Classes

offer much more, like polymorphism and encapsulation. Even if only classes are used as a

replacement of functions, there is still a significant advantage: an object can be destroyed,

while a function group cannot.

Equally important is grasping the design options of OO: static or instance methods are

needed, do they have to be private, protected or public? Will inheritance, interfaces or friends

be used?

Classes should be created in a way that blocks can be unit tested independently.

 New programming techniques

With every new release SAP introduces new programming techniques and declares others

obsolete. Make sure you always make use of the full capabalilites of the release you are

working on. All ABAP changes are documented in the release notes. Please reads those

carefully.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 13 of 44

5 Security

 Introduction

HEINEKEN’s has adopted a “Single Client Strategy”, resulting in tens of Operating Countries

(OpCos) running on the same SAP system. It is crucial that employees from one OpCo cannot

see data from another one. Therefore a watertight authorisation concept is used for data

separation between OpCos.

When designing a custom development, the proper implementation of the authorisation

concept must be a priority. If you don’t, you will not pass quality control. So always implement

the authorisation checks described in the correct fashion. And test them well.

 In General

Implementing an authorisation concept is more than checking authorisation objects or

assigning authorisation groups to table views. It is also about writing code that has no

unwanted side effects, enabling a segregation of duties and securing data when interacting

with outside systems.

Basic security needs of every development:

• Unauthorised access to the system should not be made possible.

• The display, creation, modification or deletion of business data must always be

authorised.

• Changes to business data must always be tracked.

• Data input from users or other systems must never harm the system in any way.

• A segregation of duties must always be enabled.

The following paragraphs explain some tips and tricks - some optional, some mandatory -

on how to meet these objectives.

 HEINEKEN Authorisation Concept in ABAP Coding

There are two different types of authorisation checks:

1. Check whether a user is allowed to execute a certain function.

2. Check whether a user is allowed to perform an operation on data belonging to an OpCo

(company code or plant, for instance).

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 14 of 44

5.3.1 Authorisation on Function

Every executable object must be assigned to a transaction code. The HEINEKEN athorisation

concept is based on this practice when creating authorisation roles and profiles.

The CALL TRANSACTION statement should always be preceded with an authorisation check

on the transaction code to be called. Always use method for this check:

When creating a database table or a maintenance view for an OpCo-specific database table,

the use of an authorisation group is mandatory. The use of group '&NC&' ("w/o auth. group")

is prohibited.

When the new maintenance view is for a common table (Y*), you must make sure that OpCo

data separation is guaranteed. A separate document is available describing just how to do

that the HEINEKEN way and can be gotten by sending a request to the ABAP Custodian.

5.3.2 Authorisation on Data Access

Every executable object must contain an authorisation check on the data it processes.

Custom objects should only be created and used if no standard SAP object can be used. When

a custom authorisation object needs to be created, CoE Technology (project) or AMS (support)

Authorization Consultant must approve the design prior to implementation. When in doubt

about the proper object that should be used, CoE Technology or the AMS Authorization

Consultant should always be consulted.

Do not use the authorisation concept to steer business logic in ABAP programmes.

5.3.3 OO encapsulation of authorisation concept

Because of the importance of authorisation checks in HEINEKEN’s multi-OpCo systems, a

common HEINEKEN class (YS00_CL_AUTHORITY) has been developed that encapsulates the

authorisation checks. The use of these authorisation objects is mandatory for each new

development.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 15 of 44

Three methods have been created:

• CHECK_AUTHORITY_TRX

• CHECK_AUTHORITY_VALUE_SINGLE

• CHECK_AUTHORITY_VALUE_MULTIPLE

An example of each can be found in programme YS00_RS_ALV_GRID_TEMPLATE.

 Application Security

Changes to business data must always be tracked, so it can be audited. For this reason, it is

prohibited to directly update a business data table. A BAPI, standard SAP function module

(preferably one that is released by SAP) or class interface should always be used to change

business data.

It is not allowed to use system commands. For this reason it is prohibited to use anything on

SAP's kernel, either by C-call, SYSTEM-CALL, method implementation by kernel module, or

otherwise.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 16 of 44

6 Performance

 Introduction

The performance of a single custom development can wrack havoc on a system’s performance

when certain guidelines are not followed. Programming reports requires a thorough

understanding of database selects.

In this chapter a list of rules will be included that are strongly suggested to be implemented.

However, there might be situations where deviating from these rules might provide a better

solution to the problem. Be pragmatic about this. When in doubt, the HEINEKEN ABAP

Custodian can help out.

 In General

The Below table describes per development service the acceptable performance in a

productive system.

Service Performance

Reports For online-reports output must be available within 30

seconds.

For background-reports no specific demands are set.

Dialog Programs Online-programs, next screen must appear within max.

5 seconds.

SAP-script / Smartforms Online-programs, output should be available within max.

30 seconds.

Interfaces EDI-programs should be scheduled in job class A.

Table 1 - Acceptable performance per development

 Regarding Database Access

The traffic between the database server and the application server has a large impact on

performance. This paragraph describes a number of measures that can be taken to limit that

traffic. This only goes for traditional, relational database. For HANA databases different rules

apply.

When selecting data from the database:

• The number of transfers between application and database should be kept small.

• The range of data to be searched should be kept small.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 17 of 44

• The amount of data to be transferred from the database to the application should be

kept small.

6.3.1 Limit Amount of Traffic

Array support statements should be used as much as possible. For the sake of increasing

performance, it is no longer allowed to use SELECT ... ENDSELECT loops or nested SELECT

statements. Instead, the additions INTO TABLE [itab] and FOR ALL ENTRIES should be used.

The addition FOR ALL ENTRIES should not be used when a large dataset is expected to be

returned. In any way, the existence of records in the internal table should always be checked,

which is linked to the addition prior to the SELECT statement. Not doing so, will result in a

SELECT statement without a WHERE clause.

Using OPEN CURSOR should be considered when large datasets are expected to be returned.

This will create an open database cursor. No data will be retrieved until specifically requested

so, by using the FETCH statement. The FETCH statement can be used with a PACKAGE SIZE

addition. The ABAP Keyword Documentation should be referred to for more information.

Buffering small static tables should be considered. This will avoid re-reading the same data.

The use of buffering per database table can be enabled through the corresponding Data

Dictionary object. It should be taken into account that buffering is automatically bypassed

when certain Open SQL constructions are used.

When entries are INSERTed, UPDATEed or DELETEed in a (custom) database table, block

processing should be used instead of individual table entries. This ensures that the index has

to be maintained only once, which relieves the workload on the database.

6.3.2 Limit Search Range

When building a WHERE clause, operand EQ (or '=') should be used, linked with AND as much

as possible. In addition, the conditions should be kept as simple as possible - complex

conditions will be translated into single statements on the database server.

Table indexes do not support the operands NOT and LIKE in a WHERE clause, so these should

be avoided. All the fields of an index that are behind a field for which a comparison other than

EQ is specified in the WHERE clause cannot be used for searching in a table index.

It is allowed to use native database hints, but these should be used with caution. Refer to OSS

Note 129385 for more information.

6.3.3 Limit Result Set

Wherever possible, all selection conditions should be included in the WHERE clause. Large

datasets should not be selected and then checked with CHECK or an IF-construction.

If only a few fields need to be transferred, SELECT should be used with a field list, and not

SELECT *. Using a predefined database view may also be considered. When using a field list,

the required fields should be entered in the exact same order as in the Data Dictionary.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 18 of 44

6.3.4 Table content archiving

One of the best ways to improve performance is archiving. This also goes for custom built

tables. As a general rule: when new data that holds transactional data is created, archiving

must also be included in the design and in the project budget and the objects should be

created that will do this archiving.

 Regarding Internal Processing

When processing data in the application, the following should be considered and ensured:

• The data typing of the internal table should be optimal;

• Read and write access to internal tables should be optimised.

6.4.1 Ensure Correct Data Typing

A well performing internal table begins with correct data typing. Formal table typing results

in a correct use of overhead in the memory at runtime. For this reason, it is not supported to

use the generic table types ANY TABLE or INDEX TABLE unless it is necessary.

When the internal table is expected to hold large sets of records, the use of the HASHED TABLE

type should be considered.

As a rule, it is not necessary to allocate the initial size of an internal table. This only makes

sense when the exact number of lines that will be stored in the table is known. In any way, it

is prohibited to use the addition OCCURS, since it has become obsolete.

6.4.2 Optimise Access to Internal Tables

It is prohibited to use the header line of an internal table. Using a work area decreases the

amount of overhead on the internal table and improves performance. In addition, it separates

data processing from data storing.

When inserting new records into a table of a generic type or a non-generic table type with a

specified index, the use of the APPEND statement should be considered, instead of the INSERT

statement as the last one requires the index to be updated, resulting in a higher performance.

When processing multiple records of an internal table at once, using block processing should

be considered. Block processing is performed by using the addition LINES OF itab [FROM idx1]

[TO idx2] of the statements INSERT and APPEND, or the WHERE addition of the DELETE

statement.

When an internal table is processed using a step-loop, the current step must be assigned to

a field-symbol, instead of a work area. Using the ASSIGNING addition improves performance

and makes the MODIFY statement within the step-loop obsolete.

When only a small number of fields of an internal table's record needs to be modified, using

the addition TRANSPORTING should be considered. This will prevent the unnecessary

assignment of table components.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 19 of 44

When an internal table is accessed using the READ statement or a step loop to check for the

existence of a record, the addition TRANSPORTING NO FIELDS should be used.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 20 of 44

7 Readability

“Always code as if the guy who ends up maintaining your code will be a violent psychopath

who knows where you live.” - M. Golding

When a custom development is created, no matter how big or small, it should be considered

that someone else will be supporting and maintaining it. This means that everything

developed must be readable and understandable by everyone else. This places a high

emphasis on clean, well-structured and well documented source code. Intelligible

programmes tend to have less bugs and save money in the long run.

Understanding of code can be increased when using:

• Inline Documentation. Make it meaningful: explain what you are trying to achieve

functionally and elaborate on technical difficulties and quirky bits.

• Headers with details on the work done in the program (like author, date, revision

marker and details of the change)

• Revision markers. Never delete code in an already productive program, but comment

the faulty code and add the revised code below, while also adding comments why the

change was done.

• Pretty Printer - with automatic indentation and keywords in uppercase.

Some good examples of readable programming are available in DH1. Have a look at these

programs. If you design your programs like this, you will be sure the HEINEKEN quality

standard for readablility are met.

• YS00_RS_SALV_TEMPLATE, using CL_SALV_TABLE

• YS00_RS_ALV_GRID_TEMPLATE, using CL_GUI_ALV_GRID

 Program Flow and Modularisation

A program should always be modulised in such a way that the main parts of the program are

clearly separated. This improves both readability and reusability. The minimum separation

must be between:

• Selection of data

• Processing of data

• Presenting output

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 21 of 44

• Saving changes to the database

The source code should be separated into units with a clear function and with a name, which

describes that function.

 Reusability

An action should always be programmed just once. Therefore, when a solution is designed

that needs to perform the same action more than once, it should be placed in a reusable unit.

Global classes are the reusable objects of choice, but dependant on the use of the reuable

unit, other options may be chosen as well. Keep the MVC design concept in mind when chosing

which method suits your requirement best.

 Multilingual Support

The default language to develop custom objects is English. This means that all objects created

must have English as the Original Language in their attributes.

All texts must be translatable.

Because some languages read from right to left (i.e. Arabic), an exception is made for those

objects that rely on a correct output in the OpCo's preferred language.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 22 of 44

8 Documentation

All development objects are documented in an FDF. Apart from the functional requirements,

the resulting technical objects are added to the FDF as well.

 Contents of Documentation

The documentation of every development should contain the following information:

• The purpose of the object: why was the object created?

• The business process to which the object belongs.

• The relations to other objects (prior programs, subsequent programs).

• The description of the structure of the object.

• Elements from which the object has been built.

• Use of standard programmes, function modules, classes, etc.

• Any calls to standard SAP transactions.

• Any database updates performed by the object.

• All known limitations of the program, e.g.:

- Can only run in background/ dialog,

- Can only be executed during specific times, days, months.

The documentation must be in English and intelligible. Pseudo-code should be used if

considered appropriate. The actual source code should not be dumped in the documentation:

the ABAP editor is used for storing source code.

The technical documentation must be delivered as part of the FDF (also known as FIRE).

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 23 of 44

9 Coding Conventions

This chapter describes the do’s and don'ts when developing objects containing ABAP source

code and Data Dictionary objects. The purpose of having coding conventions is to ensure

uniform, maintainable, correct, stable, flexible and extendible developments.

 General Rules

• All custom developments changes are done in the development environment and are

distributed to subsequent systems using the Change and Transport Management

System (CTMS).

• All custom developments must be assigned to a package. There is one package per

functional stream in case of common functionality and one per OpCo in case of local

functionality. Packages are created by Global IT and it is under no circumstances

allowed to create or change a package. If a particular package seems to be missing or

incorrect, the ABAP custodian at Global IT should be informed.

• It is prohibited to create objects in the standard SAP namespace, unless SAP explicitly

asks by note instruction.

• Developments in ABAP Query are prohibited for performance and security reasons.

• When creating an ABAP object, the following attributes, if available, should always be

entered: status (should be set to Customer Production Program) and application

(should reflect the functional stream).

 Use of Constants

The use of hardcoded values should be avoided in codes. Hardcoded programming makes a

program less flexible. A way to maintain values outside a program should always be provided

or the values should be retrieved from the proper customising tables. An exception is made

for values with a strong technical nature.

A class (YS00_CL_CONSTANTS) has been made available for constants retrieval. All new

development should use this class instead of the old and cumbersome function modules.

 Obsolete and Non-released Function Modules

It is prohibited to call function modules in a source code that SAP has marked obsolete.

Instead, the replacing function or method should be used as explained in the on-line

documentation of the obsolete module.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 24 of 44

It is not supported to call function modules in a source code that are not released by SAP. SAP

does not guarantee the functionality of these modules in the current version or future versions

of the system. Instead, an alternative function module or method should be found, that has

been released or a layer should be built around the function module. If a non-released

function is used, you accept the risk that the ABAP Custodian will reject the development.

 Changing and Copying Standard SAP

It is prohibited to change the SAP standard. Changes to the SAP standard are automatically

overwritten during upgrades, causing unwanted side effects or support issues.

Do not copy the SAP standard. Copying the SAP standard and bringing it to the customer

namespace means a deviation of standard processing and places the object out of support

from important software updates. If you do choose to do so, any source code copied must

comply with the Code of Conduct, including naming conventions.

 Enhancing Standard SAP

There are four types of user exits that can be used to change the behavior of standard SAP:

1. The oldest types of user-exits are hardcoded subroutines in the SAP code. A well-known

example is the include MV45AFZZ that contains subroutines that are called from main

program SAPMV45A (Sales Orders).

2. Classical user-exits (part of an enhancement project) are implemented, activated and

documented using transaction CMOD.

3. BAdI (Business Add-In) is an object-oriented approach to user-exits. The advantage of

BAdIs is that multiple instances can be implemented of the same definition.

4. The Enhancement Framework can be used to change almost any standard SAP code.

Either at coded enhancement spots (explicit enhancements) or at fixed points in any

code, e.g. at the beginning and end of coding blocks (implicit enhancements). Because

of there potential impact, implicit enhancements should be used as a last resort and

with utter care.

A word of caution: when enhancing the standard functionality there is an opportunity to

implement source code that can interfere with or seriously alter subsequent standard

processing, the handling of the Logical Unit of Work (LUW) or that might compromise database

integrity. Care should be taken with this powerful tool and the consequences of coding should

be documented exquisitely. If an enhancement spot, a user exit or a BAdI is available, these

should always be used instead of implicitly enhancing standard SAP.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 25 of 44

When implementing a user-exit, it is prohibited to implement a source code directly in the

container. Instead, the source code should be implemented in an external include-file and

this file should be assigned to the container. A better way of doing that is creating a class for

the user exit and calling a method. When implementing local, OpCo-specific functionality, the

logic should always start with a check on the appropriate OpCo's organisational element(s).

When implementing a classical user-exit (type 2), the use of an enhancement project is

mandatory. These project definitions can only be implemented for common use. This means

that the naming convention for common objects should be applied.

The enhancement framework will gradually replace existing methods of enhancing standard

SAP and its use is encouraged.

 User Interface

9.6.1 Error Handling

A correct handling of errors is essential for reasons of providing correct information to the

end-user and for program stability. It cannot be stressed enough that all possible exceptions

in a program must be anticipated and caught. All exceptions must be unit tested, also

negatively.

All ABAP-statements that provide return codes should be tested for the value of the field SY-

SUBRC. In this way, errors or short-dumps can be avoided.

Class-based exception handling is an Object Oriented way of error handling. It is more

flexible, enables standard error handling and storing of important context data. Class-based

exceptions can be propagated throughout the program stack.

A global class for exception handling is available (YS00_CL_EXCEPTION_HANDLER). This global

class must be used in all situations where storing errors in the SAP Application Log is needed.

There is also an example available using this global class and an exception class

(YS00_RS_EXAMPLE_EXC_HANDLING). If these are not available on your development system,

please contact the ABAP Custodian.

9.6.2 Output

9.6.2.1 GUI Screens

Follow the guidelines on ergonomics as specified by SAP, for instance:

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 26 of 44

Whenever possible a screen should have an input parameter on an organisational entity. The

input to this parameter must be set to mandatory, to allow for a better authorisation control.

9.6.2.2 ABAP List Viewer (ALV)

When creating a reporting program, all table output, no matter how little, must be displayed

using the standard SAP ALV grid display functionality. This ALV grid allows end-users to sort,

filter and summarise data in a standard and unified way. Check below template programs:

• YS00_RS_SALV_TEMPLATE for a simple two-dimensional list.

• YS00_RS_ALV_GRID_TEMPLATE for an ALV grid with more functionality.

The use of other GUI Controls is highly recommended when you are developing for the SAP

GUI. The use of classical list processing (WRITE) is not allowed at HEINEKEN.

9.6.2.3 SAP Script, Smartforms and Adobe Forms

When output demands printing and/ or sending, using a form should be considered.

SAP provides three tools to create a form:

1. SAP Script - the oldest tool, allowing for a hybrid solution of data selection and

processing.

2. Smartforms - interface objects, separating layout from data processing.

3. Interactive Forms - XML structured PDF documents.

When creating forms the more portable Interactive Forms is the preferred way, directly

followed by Smartforms. Use of SAPscript should be avoided when possible.

9.6.3 SAP Easy Access Menu

Every executable transaction code must be assigned to an SAP Easy Access Menu. Common

functionality should be assigned to an enhanced SAP menu. Local functionality should be

assigned to an OpCo specific menu.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 27 of 44

 Automated Interface

9.7.1 BAPI versus BDC

Whenever transactional data or master data needs to be created or updated from a custom

development, BAPIs must be used. If a BAPI is not available, a suitable and released function

module can be used. A BDC should only be used when there is absolutely no other way of

reaching a specific goal and only after discussion with the Global IT ABAP Custodian.

BDC-interfaces (Batch Data Communication) are expensive to implement, difficult to maintain

and error-prone. Using BAPIs, SAP guarantees database integrity and compatibility in case of

an upgrade. With BDC-interfaces, errors may occur when the respective screen has been

changed after an upgrade or through customising. BAPIs also have a performance advantage

over BDC interfaces.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 28 of 44

10 Naming Conventions

 Introduction

A naming convention is an important tool to ensure uniformity in the system. It enhances the

visibility of objects and readability of source code. HEINEKEN recognises two object families

that require a naming convention.

• Repository objects

• Internal elements.

Please refer to the appendices for a complete list of naming conventions. All names must be

in English.

 Repository Objects

The Naming Convention for Repository objects only applies to transportable objects. Objects

in temporary classes (e.g. $TMP) do not have to follow the ABAP Code of Conduct. However,

bear in mind that lots of $TMP-objects get promoted to a package later in life. So it is good

practice to always follow the naming convention to avoid rework later on.

SAP reserves all objects beginning with Y or Z for the customer. At HEINEKEN the Z-namespace

is reserved for local OpCo development; The Y is reserved for common developments.

In general, naming is as follows: [PACKAGE]_[TYPE]_[Description]. For example, a common

smartform for sales would be called YV00_SS_PRINTDELIVERY; a local one for Poland

ZPL01_SS_PRINTDELIVERY.

The following objects are always common:

• CMOD projects.

• Secondary table indices.

• Append structures to repository objects.

 Internal Elements

Adhering to the naming convention for internal elements enhances code readability.

In general, naming is as follows: [TECHNICAL]_[DESCRIPTION]. For example, a global structure

would be WA_SALESORDER; the same structure locally would be called LWA_SALESORDER.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 29 of 44

11 Workflow

This chapter describes the do’s and don'ts when developing objects with regards to SAP

Workflow.

 Workflows

Programmed binding should only be used when no other solution is available and it should

be documented clearly. A programmed binding can make problem solving on a productive

system a lot harder.

Agent assignment should be flexible. The actual agent determination should be done at

runtime as much as possible instead of in previous tasks. For sensible tasks agents should be

assigned using authorisation roles.

 BOR objects and classes

Standard available BOR objects should be used as much as possible. If necessary, the object

can be extended using a subclass and delegation. If no standard BOR object is available a

workflow class should be created instead of a BOR object.

If general methods or attributes are required which are not directly related to the BOR object

or class, they should be created in a general, reusable workflow class. If such a class is not

yet available, it should be created otherwise the existing one should be used.

 Naming conventions

The naming convention for workflow related objects will follow the naming conventions for

ABAP objects.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 30 of 44

12 Governance

 Compliance checking

Compliance checking is done by the ABAP Custodian. The following triggers can be

identified:

1: Request for Change process related to FIRE developments.

2: FIRE Developments in projects.

3: Transition of Build phase to Run phase and Quality Assurance check of documentation.

 Derogation

The standard derogation process needs to be followed.

Derogation can be given for existing legacy objects: in this case, only the modifications to the

objects need to comply with this CoC. All newly created objects have to comply with this CoC

in full.

This CoC is not an iron clad set of rules, but rather a guideline on how one should develop

ABAP programmes within the HEINEKEN landscape. If there is a good reason to not adhere to

this document, this should be discussed with the Global ABAP Custodian and the deviation

should be documented both inline and in the external documentation. Every developer should

always look for the best technical solution.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 31 of 44

Appendices

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 32 of 44

A. Naming Convention Repository Objects

This appendix explains per development object the proper naming convention. Following

these rules is mandatory.

Only the most commonly used objects are explained here. When an object appears to be

missing, the ABAP Custodian at Global IT should be consulted.

For the following objects, a naming convention will not be provided, because the development

of these is prohibited:

• Logical databases

• SAP Queries

• Report Writer

• Text Objects and Text ID's (the ones provided by standard SAP should suffice)

• Match codes (has been replaced by Search Helps)

• CATT Procedures

For ease of reference, the objects are grouped by development service. The type in the second

column refers to the SAP technical object type, as can be found through search help

SCTSOBJECT.

Please, also refer to the general explanation of these rules in chapter 10.2.

Object Type Format Value Explanation

Development Classes

Common classes DEVC Y[APPL]00 'Y' hardcoded prefix

[APPL] 1 character application area

'00' hardcoded extension (double

zero)

Local classes DEVC Z[OPCO] 'Z' hardcoded prefix

[OPCO] 3 character OpCo

abbreviation

Object Oriented Programming

Business Object Types SOBJ [DEV]_B[EXT] [DEV] Development package

'_' underscore

'B' hardcoded prefix

[EXT] 4 digit number

Class Objects CLAS [DEV]_CL_[DESCR] [DEV] Development package

'_' underscore

'CL' hardcoded prefix

'_' underscore

[DESCR] Free description

Class Interfaces INTF [DEV]_IF_[DESCR] [DEV] Development package

'_' underscore

'IF' hardcoded prefix

'_' underscore

[DESCR] Free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 33 of 44

Exception classes CLAS YCX_[DEV]_[DESCR] ZCX_

[DEV]

[_DESCR]

Hardcoded prefix

Development package

Free description

Reports, Programs and Includes

Executable Reports PROG [DEV]_R[APPL]_[DESCR] [DEV] Development package

subtype = 1 ‘_’ underscore

‘R’ hardcoded prefix

[APPL] 1 character application area

‘_’ underscore

[DESCR] Free description

Module Pools PROG SAPM[DEV]_[APPL]_[DESCR] ‘SAPM’ hardcoded prefix

subtype = M [DEV] Development package

‘_’ underscore

[APPL] 1 character application area

‘ _’ underscore

[DESCR] Free description

Subroutine Pools PROG SAPF[DEV]_[APPL]_[DESCR] ‘SAPF’ hardcoded prefix

subtype = S [DEV] Development package

‘_’ underscore

[APPL] 1 character application area

‘ _’ underscore

[DESCR] Free description

Include Files PROG [DEV]_I[APPL]_[DESCR]_[EXT] [DEV] Development package

subtype = I ‘_’ underscore

‘I’ hardcoded prefix (capital i)

[APPL] 1 character application area

‘_’ underscore

[DESCR] Free description

‘_’ underscore

[EXT] 3 character extension

TOP = TOP include

Fxx = Forms include

Exx = Events include

Ixx = PAI include

Oxx = PBO Module

Dialog Module DIAL [DEV]_[APPL]_[DESCR] [DEV] Development package

‘_’ underscore

Note: Use max 25 characters,

as the name can be used to

create the module pool.

[APPL] 1 character application area

[DESCR] Free description

Transaction Codes

Transaction Codes TRAN [DEV]_[DESCR] [DEV] Development package

‘_’ underscore

[DESCR] Free description

Function Library

Function Groups FUGR [DEV]_[DESCR] [DEV] Development package

‘_’ underscore

[DESCR] Free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 34 of 44

Function Modules FUNC [Z]_[DEV]_FM_[VERB]_[DESCR] [Z] Z (local) or Y (common)

‘_’ underscore

[DEV] last characters of dev. pack

minus the first character

Note: the underscore on the

second position is mandatory

because without it, SAP will

not recognize the object as

custom.

‘_’ underscore

FM hardcoded prefix

‘_’ underscore

[VERB] i.e. CREATE, SELECT, etc.

‘_’ underscore

[DESCR] free description

Enhancements

Enhancement Spots ENHS [DEV]_ES_[DESCR] [DEV] Development package

‘_’ underscore

‘ES’ hardcoded prefix

‘_’ underscore

[DESCR] Free description

Enhancement

Implementations

ENHO [DEV]_EO_[DESCR] [DEV] Development package

‘_’ underscore

‘EO’ hardcoded prefix

‘_’ underscore

[DESCR] Free description

Composite enhancements ENHC [DEV]_EC_[DESCR] [DEV]

‘_’

‘EC’

‘_’

[DESCR]

Development package

underscore

hardcoded prefix

underscore

Free description

BAdI Implementation SXCI [DEV]_BD_[DESCR] [DEV] Development package

'_' underscore

'BD' hardcoded prefix

'_' underscore

[DESCR] Free description

Customer Enhancement

Projects

CMOD [DEV]_[APPL][nn] [DEV] development package

'_' underscore

Note: a CMOD-project is

common functionality by

default, so only Y-packages

apply.

[nn] first free number

IDoc Interfaces

IDoc Basic Types IDOC [DEV]_IDOC_[DESCR] [DEV] Development package

'_' underscore

'IDOC' hardcoded prefix

'_' underscore

[DESCR] Free description

IDoc Segment Types TABL Z1[DEV]_[DESCR] 'Z1' hardcoded prefix

Note: Names of Segment

Definitions are generated by

SAP based on the Segment

Type

[DEV] Development package

'_' underscore

[DESCR] Free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 35 of 44

IDoc Logical Messages [DEV]_[DESCR] [DEV] Development package

Note: This is technically not a

repository object, but due to

its cross-platform

implications, an entry here is

in order

'_' underscore

[DESCR] Free description

IDoc Processing codes [DEV]_[DESCR] [DEV] Development package

Note: This is technically not a

repository object, but due to

its cross-platform

implications, an entry here is

in order

'_' underscore

[DESCR] Free description

IDoc Extension Types IEXT [DEV]_IEXT_[DESCR] [DEV] Development package

'_' underscore

'IEXT' hardcoded prefix

'_' underscore

[DESCR] Free description

XSL Transformation XSLT [DEV]_XSLT_[DESCR] [DEV] Development package

'_' underscore

'XSLT' hardcoded prefix

'_' underscore

[DESCR] Free description

Forms

SAP Script FORM [DEV]_SS_[DESCR] [DEV] Development package

'_' underscore

'SS' hardcoded prefix

'_' underscore

[DESCR] Free description

SAP Script Styles STYL [DEV]_[DESCR] [DEV] Development package

'_' underscore

[DESCR] Free description

Text Names TEXT [DEV]_TX_[DESCR] [DEV] Development package

'_' underscore

'TX' hardcoded prefix

'_' underscore

[DESCR] Free description

Smartforms SSFO [DEV]_SS_[DESCR] [DEV] Development package

'_' underscore

'SS' hardcoded prefix

'_' underscore

[DESCR] Free description

Smartform Styles SSST [DEV]_[DESCR] [DEV] Development package

'_' underscore

[DESCR] Free description

Interactive Forms SFPF [DEV]_PDF_[DESCR] [DEV] Development package

'_' underscore

'PDF' hardcoded prefix

'_' underscore

[DESCR] Free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 36 of 44

Interactive Forms

Interfaces

SFPI [DEV]_PDFIF_[DESCR] [DEV] Development package

'_' underscore

'PDFIF' hardcoded prefix

'_' underscore

[DESCR] Free description

Web Development

Web Dynpro Components WDYN [DEV]_WD_[DESCR] [DEV] Development package

'_' underscore

'WD' hardcoded prefix

'_' underscore

[DESCR] Free description

Web Dynpro Applications WDYA [DEV]_WAP_[DESCR] [DEV] Development package

'_' underscore

'WAP' hardcoded prefix

'_' underscore

[DESCR] Free description

BSP Application WAPA [DEV]_BSP_[DESCR] [DEV] Development package

'_' underscore

'BSP' hardcoded prefix

'_' underscore

[DESCR] Free description

BSP Extension WTAG [DEV]_BSX_[DESCR] [DEV] Development package

'_' underscore

'BSX' hardcoded prefix

'_' underscore

[DESCR] Free description

Web services WEBS [DEV]_WS_[DESCR] [DEV]

'_'

‘WS’

'_'

[DESCR]

Development package

underscore

hardcoded prefix

underscore

Free description

Data Dictionary

Database Tables TABL [DEV]_DB_[DESCR] [DEV] Development package

'_' Underscore

'DB' hardcoded prefix

'_' Underscore

[DESCR] Free description

Table Index INDX Y[EXT] 'Y' Hardcoded prefix

[EXT] First free number

Database Views VIEW [DEV]_V_[DESCR] [DEV] Development package

'_' Underscore

'V' hardcoded prefix

'_' Underscore

[DESCR] Free description

Structures TABL [DEV]_ST_[DESCR] [DEV] Development package

Note: This also applies to

Append Structures.

'_' Underscore

'ST' hardcoded prefix

'_' Underscore

[DESCR] Free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 37 of 44

Table Types TTYP [DEV]_TT_[DESCR] [DEV] Development package

'_' Underscore

'TT' hardcoded prefix

'_' Underscore

[DESCR] Free description

Data Elements DTEL [DEV]_DT_[DESCR] [DEV] Development package

'_' Underscore

'DT' hardcoded prefix

'_' Underscore

[DESCR] Free description

Data Domains DOMA [DEV]_DO_[DESCR] [DEV] Development package

'_' Underscore

'DO' hardcoded prefix

'_' Underscore

[DESCR] Free description

Type Groups TYPE [DEV][EXT] [DEV] Development package

[EXT] 1 character extension (0-9,

A-Z)

Collective Search Helps SHLP [DEV]_SH_[DESCR] [DEV] Development package

'_' Underscore

'SH' hardcoded prefix

'_' Underscore

[DESCR] Free description

Elementary Search Helps SHLP [DEV]_SH_[DESCR][EXT] [DEV] Development package

'_' Underscore

'SH' hardcoded prefix

'_' Underscore

[DESCR] Free description

[EXT] 1 character extension (A-Z)

corresponding with hotkey

Lock Objects ENQU E[DEV]_[DESCR] 'E' hardcoded prefix

[DEV] Development package

'_' Underscore

[DESCR] free description

Authorisations

Authorization Object

Classes

SUSC [DEV] [DEV] Development package

Note: No more than one

authorization class per

development package is

allowed

Authorization Objects SUSO Y_[DESCR] or [DEV]_[DESCR]

'Y'

[DEV]

Hardcoded prefix if global

OpCo class when local

'_' Underscore

[DESCR] free description

Miscellaneous

Application Log Objects [DEV]_[DESCR] [DEV] Development package

Note: This is technically not a

repository object, but due to

its technical implications, an

entry here is in order.

'_' Underscore

[DESCR] free description

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 38 of 44

Application Log Sub-

objects

 [DEV]_[DESCR] [DEV] Development package

Note: This is technically not a

repository object, but due to

its technical implications, an

entry here is in order.

'_' underscore

[DESCR] free description

Area Menus SHI3 [DEV]_[DESCR] [DEV] Development package

'_' underscore

[DESCR] free description

Data Sources for BI

Systems (in Source System)

OSOA [DEV]_DS_[DESCR] [DEV] Development package

'_' underscore

'DS' hardcoded prefix

'_' underscore

[DESCR] free description

Message Classes MSAG [DEV]_[DESCR] [DEV] Development package

'_' underscore

[DESCR] free description

Number Range Objects NROB [DEV]_[APPL][EXT] [DEV] Development package

'_' underscore

[APPL] 1 character application area

[EXT] first free number

Parameter IDs PARA [DEV]_[DESCR] [DEV] Development package

'_' underscore

[DESCR] free description

Table 2 - Naming Convention per Repository Object

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 39 of 44

B. Naming Convention Internal Elements

This appendix lists all permitted prefixes for declaring internal elements. A global and local

prefix is provided.

The checks in SCI-variant Y_NAMING_CONVENTIONS correspond with this naming convention.

Please, also refer to the general explanation of these rules in chapter 10.3.

Type of

element

Global

prefix

Local

prefix

Example

Classes cl_ lcl_ CLASS cl_material DEFINITION ABSTRACT.

Data types ty_ lty_ TYPES: BEGIN OF ty_material.

TYPES: expand TYPE c LENGTH 1.

INCLUDE TYPE mara.

TYPES: END OF ty_material.

Table types ty_t_ lty_t_ TYPES: ty_t_materials TYPE HASHED TABLE OF mara

 WITH UNIUQE KEY matnr.

Data references dr_ ldr_ DATA: dr_generic_data TYPE REF TO data.

Database cursors db_ ldb_ DATA: db_material TYPE cursor.

Internal tables it_ lit_ DATA: it_materials TYPE STANDARD TABLE OF mara.

DATA: it_matvendor TYPE SORTED TABLE OF marc

 WITH UNIQUE KEY matnr werks.

Range tables ra_ lra_ DATA: ra_matnr TYPE RANGE OF matnr.

Work area wa_ lwa_ DATA: wa_material TYPE mara.

Object references o_ lo_ DATA: o_hierseq

TYPE REF TO cl_salv_hierseq_table.

Variable fields tp ltp_ DATA:

 tp_quantity TYPE menge,

 tp_found TYPE boolean,

 tp_lines TYPE i,

 tp_surname TYPE c LENGTH 30.

Constant values co_ lco_ CONSTANTS: co_standard_order TYPE auart VALUE

'TA'.

Statics n/a lst_ STATICS: st_index TYPE i VALUE 21.

Field groups fg_ n/a FIELD-GROUPS:

 header,

 fg_material,

 fg_customer.

Field symbols <related to the
type it will be
assigned to>

Idem. FIELD-SYMBOLS:

 <it_matnr> TYPE STANDARD TABLE,

 <any> TYPE ANY.

Parameters pa_ n/a PARAMETERS: pa_matnr TYPE matnr.

Select options so_ n/a SELECT-OPTIONS: so_matnr FOR wa_mara-matnr.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 40 of 44

Type of

element

Global

prefix

Local

prefix

Example

Table controls sc_ n/a CONTROLS: tc_customers TYPE TABLEVIEW

 USING SCREEN 9000.

Tabstrip controls sc_ n/a CONTROLS: sc_customers TYPE TABSTRIP.

Changing parameters * cxx_ n/a FORM create_material CHANGING ctp_menge TYPE p.

METHODS: create_material CHANGING ctp_quantity

TYPE menge.

Using parameters * ixx_ n/a FORM create_material USING itp_matnr TYPE matnr.

Exporting parameters * exx_ n/a METHODS: create_material EXPORTING ewa_matmaster

TYPE mara.

Importing parameters * ixx_ n/a METHODS: create_material IMPORTING itp_matnr TYPE

matnr.

Returning parameters * rxx_ n/a METHODS: create_material RETURNING rtp_found TYPE

abap_bool.

Exceptions parameters exc_ n/a METHODS: divide_by_zero EXCEPTIONS

exc_arith_error.

Interfaces if_ lif_ INTERFACE if_create_material.

Table 3 - Naming Convention for Internal Elements

* The 'xx' in the prefix should be replaced by the parameter's data type. For example: an

imported table is typed as iit_materials, and an exported work area is typed as

ewa_matmaster.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 41 of 44

C. SAP CRM Specific Extensions

In general CRM must strictly follow the CoC guidelines described in this document. However,

there are some specific actions done in CRM which lead to inconsistencies with the CoC

rules.

In the following paragraphs deviations from CoC can be found and some design guidelines

for CRM specific coding.

Enhancement of standard CRM business objects can be done using below tools:

• Easy Enhancement Workbench and

• Application Enhancement Tool

Easy Enhancement Workbench (EEW) and Application Enhancement Tool (AET) are standard

SAP tools which provide a way to enhance standard business objects with custom fields.

EEW and AET automatically generate all the needed dictionary objects but the naming of the

objects cannot be modified: only the prefix (Y or Z which is the default) and a simple literal

description of the field can be customised by the user.

Also GenIL BOL objects are created automatically: their class names cannot be modified as

well.

EEW and AET naming conventions

In the following table the naming conventions used by the EEW and AET can be found:

Type Generated Name Description

Field name [PREFIX][PREFIX][USER_DESCR] [PREFIX]* = Y or Z

[USER_DESCR] = field name set by user during the
field creation

E.g. ZZBEERVISIBI (Beer-Visibility in BP master
data)

Data Element [PREFIX]BU_[GENERATED_DESCR] [PREFIX]* = Y or Z
[GENERATED_DESCR] = generated by the system

E.g. ZBU_001POCXA (Generated Data Element
Beer-Visibility)

Domain [PREFIX]BU_[GENERATED_DESCR] [PREFIX]* = Y or Z
[GENERATED_DESCR] = generated by the system

E.g. ZBU_00Y3OCXA (Generated Domain Beer-
Visibility)

Structure [PREFIX]BST[GENERATED_DESCR] [PREFIX]* = Y or Z
[GENERATED_DESCR] = generated by the system

E.g. ZBSTC0000NJOBXB (Dominant Brand)

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 42 of 44

Type Generated Name Description

Table [PREFIX][ENHANCED_TABLE][GENERATED_DESCR] [PREFIX]* = Y or Z
[ENHANCED_TABLE] = system database table
which will hold the custom table field (e.g.
BUT000, business partner table in CRM)
[GENERATED_DESCR] = generated by the system

E.g. ZBUT00005DORGL (Seasonality)

GenIL BOL
classes

ZL_[EEW_FIELD]_[SYSTEM_OBJECT]_IL_EEW [EEW_FIELD] = EEW field name abbreviation
[SYSTEM_OBJECT] = enhanced object type

E.g. ZL_ZZDQP_BUPA_IL_EEW

* [PREFIX] is configured in customising

Web UI Enhancements

In CRM 7.0 new custom BSP components can be created or standard ones can be enhanced.

When creating a new custom BSP component (or when enhancing a standard one) a new BSP

is created: this can follow the CoC naming convention for BSPs: [DEV]_BSP_[DECSR]

All the objects included in the BSP (such as windows, views, controllers, contexts, etc.) are

automatically generated by the system, hence their names cannot be changed.

The name of the objects is: ZL_[GENERATED_DESCR]

[GENERATED_DESCR] is either the name of the superclass (without CL_, in case of an

enhancement) or follows more or less the name of the view (in case of a brand new component

or view).

When creating a new window, view or custom controller the system also gives the possibility

to set an interface name: this is not a technical object name. Depending on the object there

is no real need to set strict any naming convention, but the name should rely upon common

good sense.

In the next table suggested naming conventions for interface names can be found:

Type Name Description

Window [DESCR]Window [DESCR] = Window name

E.g. SearchWindow

View [DESCR]View [DESCR] = View name

E.g. SearchOrdersView

Viewset [DESCR]ViewSet
or
[DESCR]VS

[DESCR] = Viewset name

E.g. SearchOrderViewSet or SearchOrderVS

Overview
Page

[DESCR]Overview
or
[DESCR]OV

[DESCR] = Page name

E.g. OrderOverview or OrderOV

Guided
Maintainace
Page

[DESCR]GMP [DESCR] = Page name

E.g. CreateNewOrderGVP

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 43 of 44

In CRM developments GenIL BOL Framework should always be used for interacting with the

system (when possible). For instance a report which updates business partners is needed,

GenIL BOL framework BP object (BuilHeader) should be used, instead of BAPI or general

functions.

This allows the developer to write purely OO code which is in line with the new CoC

programming guidelines. Please bear in mind that GenIL BOL differs substantially from

traditional database approach and that it requires the involvement some experience to do this

properly, both from a logical and a performance point of view.

Title: Code of Conduct SAP Development Standard

Version: 5.0

Page 44 of 44

D. Quick Reference cards

Quick Reference

Naming Conventions Internal objects.pdf

Quick Reference

Naming Conventions Repository Objects.pdf

